刊名: 教学与研究
Teaching and Research
主办: 中国人民大学
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 0257-2826
CN: 11-1454/G4
邮发代号: 2-256
历史沿革:
现用刊名:教学与研究
创刊时间:1953
该刊被以下数据库收录:
CSSCI 中文社会科学引文索引(2012—2013)来源期刊(含扩展版)
核心期刊:
中文核心期刊(2011)
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
怎样培养学生的数学解题能力
【作者】 农 坚
【机构】 (广西百色市那坡县百省乡初级中学)
【正文】初中数学教学的目的,归根到底在于培养学生的解题能力,提高数学解题能力是数学教学中一项十分重要的任务。学生解决问题的水平也是衡量数学教学效果的标准之一。有效地培养学生数学解题能力,有助于学生开展独立的有创造性的认识活动,促进学生数学能力的发展。因此,问题的解决在于知识的掌握、运用和发展智能中具有独特的地位和作用。下面我将谈谈在教学中怎样培养学生的数学解题能力。
一、培养“数形”结合的能力
数学是研究现实世界数量关系与空间形式的一门科学, 数与形的统一结合贯穿于数学学科研究与发展的始终。数和形是数学研究的两大对象,数形结合法是一种重要的数学思想方法。数—是指数据与式子,主要表现在以下几方面:函数、方程、不等式、数列、排列组合等。形—可以理解为几何图形。采用数形结合法去解数学题,就是对题目中的条件与结论,既分析其代数含义又分析其几何含义。力图将代数和几何统一起来去找出解题思路。 数形结合是数学中的一种重要思想与解题策略, 利用数形结合这一思想, 可以较直观地对问题进行分析, 解决许多比较抽象的数学问题。因此, 通过数形结合能很好地解决一些问题, 对培养学生的解题能力非常重要。
1、 渗透数形结合思想,提高学生的数学素养
素质教育是通过科学有效的途径,开发受教育者的潜能,以完善和全面的提高学生素质为根本目的教育。数学素质在人的素质养成上具有不可替代的作用。这是因为数学的直观思维、逻辑推理、精确计算以及结论明确无误等特征是每个学生应该具备的科学文化素质。由此可见,对数学教师来说,要突出素质教育的数学教学关键是加强数学思想方法的教学,因为数学思想方法作为数学知识的精髓,它既是数学中的深层次的基础知识,又是解决问题和思维策略。数学思想方法掌握的深、浅度,直接关系到能否顺利或比较简捷地解决问题;关系到是否深刻地对数学知识本质认识,数学规律的理性认识;关系到是否能把某些数学内容和对数学的认识过程中提炼上升的数学观点加以应用。而这些数学知识的掌握是以解题思维能力作为起点的。因此,在初中数学教学中,如何引导学生选择恰当的方法来提高解题速度和效率,应注重培养学生解题能力,掌握多种方法。尤其数形结合法的教学更是学生应该熟练掌握的重要思维方法。 数形结合是解决数学问题的重要思想,其实质是把抽象的数学语言与直观的图形结合起来,以直观辅助抽象的思考,以抽象的思考研究直观的细节。著名数学家华罗庚先生说过:数无形,少直观;形无数,难入微。发掘数与形互相依存的关系,把数式运算的周密性和图形的直观性巧妙结合起来,对解决数学问题非常有益,它常能有效突破解题障碍,顺利沟通已知和未知,使问题由繁化简,由难化易。数形结合思想方法是中学数学基础知识的精髓之一,是把许多知识转化为能力的桥。在初中数学教学中,许多抽象问题学生往往觉得难以理解,如果教师能灵活地引导学生进行数形结合,转化为直观、易感知的问题,学生就易理解,就能把问题解决,从而获得成功的体验,增强学生学习数学的信心。尤其是对于较难问题,学生若能独立解决或在老师的启发和引导下把问题解决,心情更是愉悦,这样,就容易激发学生学习数学的热情、兴趣和积极性。同时,学生一旦掌握了数形结合法,并不断进行尝试、运用,许多问题就能迎刃而解。
2、 在数学教学中渗透数形结合思想 本文特从以下几个方面,对‘数形结合’解题进行例析研究。
①几何图形与数量关系相结合
几何中的计算与证明问题,常常根据几何图形的特点挖掘蕴涵的数量关系;一些数量关系的比较问题,常常构造出由数量关系反映出的几何图形,根据图形的直观性寻求解决。
②函数图象与数量关系相结合
数轴使实数与数轴上的点建立起一一对应的关系,平面直角坐标系使有序实数对与平面上的点建立起一一对应的关系,为数形结合创造了充分的条件函数图象在直角坐标系的位置及变化趋势,为研究函数的性质提供了直观、形象的依据,反过来,依据函数的性质又能推断函数图象在直角坐标系屮的位置及变化情况,数形结合成为研究解决函数问题的重要思想方法。
③图形的运动变化与函数问题的结合
函数建立起两个变量之间的关系,运动变化便进入了数学,运动改变了图形的位置、形状,其中蕴涵的 数量关系也会发生变化,研究图形运动变化体现出来的函数关系,使数形结合更具活力,更丰富多彩。
④ 注重数学思想方法的教学
加深认识,让学生亲自参与知识发现的过程。恩格斯说:世界不是一成不变的事物的集合体,而是过程的集合体。对于数学而言,知的发生过程就是思维方法的产生过程,因此教师在平时的教学过程中,应切实加深学生对知识的认识,让学生亲自去参与知识发现的过程,揭示事物的本质特征。 数学学习贯穿着两条主线,即数学知识和数学思想方法,通性通法蕴涵着丰富的数学思想和方法,更贴近学生的认知水平,符合常人的思维习惯,同样也有利于培养学生的数学能力。在初中数学中,常用的数学思想有函数和方程思想、数形结合思想、分类讨论思想、化归转化思想、整体处理思想等,上面教学片断的探究题,教者通过引导学生从数和形的角度来解决问题,很好地发展了学生的方程思想和数形结合思想,同时也渗透了数学分类的思想方法。在平时的教学中,我们应在解决问题的过程中,对这些数学思想加以揭示、运用和提炼,以提高学生的思维水平和解题能力。 人常说,数学是锻炼思维的体操,恐怕就是因为数学学科中,数形结合得最频繁最紧密的缘故吧!用数形结合思想解题,就是利用数学中形中蕴数,数中涵形的和谐统一,抓住数与形互相联系的纽带,找出数与形互相渗透的因素,准确地由形想数,正确地以数构形,使形象思维和抽象思维有机结合,互助互促,妥善、完美地解决问题。 数形结合为学生架起了具体到抽象的桥梁,它对提高学生解题能力的影响是多角度、多方面的,也是深远的,随着我们对数形结合认识的愈加深入,数形结合的作用也将发挥得愈来愈大。
二、培养学生数学“转化”思维能力
解数学题最根本的途径是“化难为易,化繁为简,化未知为已知“,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变为一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。“转化”的思想,是解题最重要的思维习惯。“转化”是研究和解决数学问题的一种有效的思考方法,根据学生已有的生活经验和知识,运用事物和事物之间互相联系,把未知变为已知,把复杂变为简单的思维方法。《新数学课程标准》中指出:数学学习应当使学生“形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力与创新精神”。就解题的本质而言,解题既意味着“转化”,因此学生学会数学“转化”策略,有利于实现学习迁移,特别是原理和态度的迁移。因此,我们在数学教学中,应当结合具体的教学内容,渗透数学“转化”思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
“转化”是解决问题时经常采用的方法,“转化”的手段和方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握“转化”策略不仅有利于问题的解决,更有益于思维的发展。教学中不应只以学生能够解决教材里的各个问题为目的,而在于学生对“转化”策略的体验与主动应用。具有初步的“转化”意识和能力,对以后的学习与解决问题将会产生十分积极的作用。
(一)、转化的学习基础
1、知识基础——策略学习的基石
万丈高楼平地起,转化策略的运用同样如此。“转化”就是把新问题变成旧问题,把复杂的问题变成简单的问题,从而使原问题得以解决的一种策略。其实,运用什么方法转化,转化后的问题又怎么解决,这都需要一定的知识基础,否则问题也不能得到解决。可见,一定的知识基础是“转化”策略学习的基石。
2、能力基础——策略学习的有力杠杆
策略的学习不仅需要一定的知识基础,也需要一定的能力基础。心理学研究表明:能力是人们获取知识、掌握技能的基本条件,完成任何一种活动都需要多种能力的结合。因此,学生已具备的能力基础可以说是策略学习的有力杠杆。
①、观察、想象、操作能力:
学习几何形体离不开敏锐的观察力和空间想象力,以及在此基础上进行动手操作的能力。
②、迁移、推理能力:由于“转化”是把一类问题转化成另一类问题,因此无论从转化的视角,还是从推广应用的视角,学生都应具有迁移、推理的能力。所以,教学“转化”策略时,要引导学生正确推理,实现转化,切实解决问题。当然更应由例题的学习,进而能解决类似的更多实际问题。
③、求异、创新能力:人人具有求异的思想,人人具有创新的冲动。事实上,转化也是一种重要的策略,但在真正解决问题时,还需要确定具体的转化目标和方法。
④、收集、处理信息的能力:现代社会是信息社会,收集、处理信息的能力是一个人必备的学习能力,也是衡量一个人能力高低的重要标准。因而,它也是学生学习转化策略的重要能力基础。
(二)、转化策略
1、运用类比联想,实现转化
类比方法是通过对两个研究对象的比较,根据它们某些方面的相同或类似之处,推出它们在其他方面也可能相同或类似的一种推理方法。因此,在学习新知识时,适时运用类比方法进行转化,可使生疏的问题转化为熟悉的问题,有利于学生更好地接受新知识,巩固旧知识。
2、运用数形结合思想,实现转化
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过做一些线段图、 数形图 、长方形面积图 、集合体等来帮助学生正确理解数量关系,使问题内容具体化、形象化,从而把复杂问题转化为简单问题的一种数学思想方法。
3、运用替换思想,实现转化
替换思想是数学教学的重要思维方法,替换的实质是改变题目的形式,但却不改变题目的本质。当我们遇到题意比较难懂的习题时,可以把题中的某些条件或问题替换成与其内容等价的另一种形式,从而实现解题思路的顺利转化,以达到解题的目的。
4、运用已有知识,实现转化
生疏问题向熟悉问题转化是解题中常用的思考方法。解题能力实际上是一种创造性的思维能力,而这种能力的关键是能否细心观察,运用过去所学的知识,将生疏问题转化为熟悉问题。因此作为教师,应深刻挖掘量变因素,将教材抽象程度利用学过知识,加工到使学生通过努力能够接受的水平上来,缩小接触新内容时的陌生度,避免因研究对象的变化而产生的心理障碍,这样做可得到事半功倍的效果。
三、交给学生数学解题方法
1、审题:审题是解题的首要步骤
审题能力如何,直接影响到解题的成败。审题的基本要求是弄清楚题目的两个基本组成部分:条件和结论。在审题时,对已知条件不能遗漏,更不能添加。对于结论,要将表达转换成其它各种等价形式。提高学生的审题能力主要是培养学生分析隐蔽的条件化简、转换已知和未知的能力。有意识地培养学生认真审题的习惯,把条件和问题分析得透彻明确,有助于提高学生的解题能力。
2、教会学生制定解题计划
数学基本概念、基础知识和基本技能是解题的思路和源泉,离开了它们,解题就成了无本之木,无源之水。因此,审题后首先要思考题中涉及到哪些主要概念,在题目的条件和结论里与哪些定理、公式、法则有关,可否直接应用,题目涉及到的基本技能、方法是什么等等。然后才形成解题计划。
3、使学生学会解题的表达
解题的表达要正确、合理、严密、简捷和清楚,把运算、推理、作图所得到的结果准确无误地加以叙述,是解题的一项基本要求。数学解题的表达有一定的规格要求,无论哪种格式,叙述应层次分明,在这个过程中,教师的示范作用非常重要,因此,作为教师不仅要注重知识的传授,而且要注重解题的示范,提高学生的解题能力。
四、增强自信是解题的关键
在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能用自己所学过的知识把它借出来。要敢于去做题。这就叫做在“在战略上藐视敌人,在战术上重视敌人”。解题需要丰富的知识,更需要自信心。没有自信心就会畏难,就会放弃。只有自信才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关。
总之,为了提高学生的数学解题思维能力,我们数学老师应尽其所能找出各种办法去帮助学生。特别是对哪些基础不够扎实的学生,我们更要多多融入到他们的学习当中,尽可能帮他们改正自身老毛病,改进他们的数学学习方法,改变他们“懒惰”的思想,转变他们的数学学习主动性,从而提高他们的数学解题思维能力。
一、培养“数形”结合的能力
数学是研究现实世界数量关系与空间形式的一门科学, 数与形的统一结合贯穿于数学学科研究与发展的始终。数和形是数学研究的两大对象,数形结合法是一种重要的数学思想方法。数—是指数据与式子,主要表现在以下几方面:函数、方程、不等式、数列、排列组合等。形—可以理解为几何图形。采用数形结合法去解数学题,就是对题目中的条件与结论,既分析其代数含义又分析其几何含义。力图将代数和几何统一起来去找出解题思路。 数形结合是数学中的一种重要思想与解题策略, 利用数形结合这一思想, 可以较直观地对问题进行分析, 解决许多比较抽象的数学问题。因此, 通过数形结合能很好地解决一些问题, 对培养学生的解题能力非常重要。
1、 渗透数形结合思想,提高学生的数学素养
素质教育是通过科学有效的途径,开发受教育者的潜能,以完善和全面的提高学生素质为根本目的教育。数学素质在人的素质养成上具有不可替代的作用。这是因为数学的直观思维、逻辑推理、精确计算以及结论明确无误等特征是每个学生应该具备的科学文化素质。由此可见,对数学教师来说,要突出素质教育的数学教学关键是加强数学思想方法的教学,因为数学思想方法作为数学知识的精髓,它既是数学中的深层次的基础知识,又是解决问题和思维策略。数学思想方法掌握的深、浅度,直接关系到能否顺利或比较简捷地解决问题;关系到是否深刻地对数学知识本质认识,数学规律的理性认识;关系到是否能把某些数学内容和对数学的认识过程中提炼上升的数学观点加以应用。而这些数学知识的掌握是以解题思维能力作为起点的。因此,在初中数学教学中,如何引导学生选择恰当的方法来提高解题速度和效率,应注重培养学生解题能力,掌握多种方法。尤其数形结合法的教学更是学生应该熟练掌握的重要思维方法。 数形结合是解决数学问题的重要思想,其实质是把抽象的数学语言与直观的图形结合起来,以直观辅助抽象的思考,以抽象的思考研究直观的细节。著名数学家华罗庚先生说过:数无形,少直观;形无数,难入微。发掘数与形互相依存的关系,把数式运算的周密性和图形的直观性巧妙结合起来,对解决数学问题非常有益,它常能有效突破解题障碍,顺利沟通已知和未知,使问题由繁化简,由难化易。数形结合思想方法是中学数学基础知识的精髓之一,是把许多知识转化为能力的桥。在初中数学教学中,许多抽象问题学生往往觉得难以理解,如果教师能灵活地引导学生进行数形结合,转化为直观、易感知的问题,学生就易理解,就能把问题解决,从而获得成功的体验,增强学生学习数学的信心。尤其是对于较难问题,学生若能独立解决或在老师的启发和引导下把问题解决,心情更是愉悦,这样,就容易激发学生学习数学的热情、兴趣和积极性。同时,学生一旦掌握了数形结合法,并不断进行尝试、运用,许多问题就能迎刃而解。
2、 在数学教学中渗透数形结合思想 本文特从以下几个方面,对‘数形结合’解题进行例析研究。
①几何图形与数量关系相结合
几何中的计算与证明问题,常常根据几何图形的特点挖掘蕴涵的数量关系;一些数量关系的比较问题,常常构造出由数量关系反映出的几何图形,根据图形的直观性寻求解决。
②函数图象与数量关系相结合
数轴使实数与数轴上的点建立起一一对应的关系,平面直角坐标系使有序实数对与平面上的点建立起一一对应的关系,为数形结合创造了充分的条件函数图象在直角坐标系的位置及变化趋势,为研究函数的性质提供了直观、形象的依据,反过来,依据函数的性质又能推断函数图象在直角坐标系屮的位置及变化情况,数形结合成为研究解决函数问题的重要思想方法。
③图形的运动变化与函数问题的结合
函数建立起两个变量之间的关系,运动变化便进入了数学,运动改变了图形的位置、形状,其中蕴涵的 数量关系也会发生变化,研究图形运动变化体现出来的函数关系,使数形结合更具活力,更丰富多彩。
④ 注重数学思想方法的教学
加深认识,让学生亲自参与知识发现的过程。恩格斯说:世界不是一成不变的事物的集合体,而是过程的集合体。对于数学而言,知的发生过程就是思维方法的产生过程,因此教师在平时的教学过程中,应切实加深学生对知识的认识,让学生亲自去参与知识发现的过程,揭示事物的本质特征。 数学学习贯穿着两条主线,即数学知识和数学思想方法,通性通法蕴涵着丰富的数学思想和方法,更贴近学生的认知水平,符合常人的思维习惯,同样也有利于培养学生的数学能力。在初中数学中,常用的数学思想有函数和方程思想、数形结合思想、分类讨论思想、化归转化思想、整体处理思想等,上面教学片断的探究题,教者通过引导学生从数和形的角度来解决问题,很好地发展了学生的方程思想和数形结合思想,同时也渗透了数学分类的思想方法。在平时的教学中,我们应在解决问题的过程中,对这些数学思想加以揭示、运用和提炼,以提高学生的思维水平和解题能力。 人常说,数学是锻炼思维的体操,恐怕就是因为数学学科中,数形结合得最频繁最紧密的缘故吧!用数形结合思想解题,就是利用数学中形中蕴数,数中涵形的和谐统一,抓住数与形互相联系的纽带,找出数与形互相渗透的因素,准确地由形想数,正确地以数构形,使形象思维和抽象思维有机结合,互助互促,妥善、完美地解决问题。 数形结合为学生架起了具体到抽象的桥梁,它对提高学生解题能力的影响是多角度、多方面的,也是深远的,随着我们对数形结合认识的愈加深入,数形结合的作用也将发挥得愈来愈大。
二、培养学生数学“转化”思维能力
解数学题最根本的途径是“化难为易,化繁为简,化未知为已知“,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变为一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。“转化”的思想,是解题最重要的思维习惯。“转化”是研究和解决数学问题的一种有效的思考方法,根据学生已有的生活经验和知识,运用事物和事物之间互相联系,把未知变为已知,把复杂变为简单的思维方法。《新数学课程标准》中指出:数学学习应当使学生“形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力与创新精神”。就解题的本质而言,解题既意味着“转化”,因此学生学会数学“转化”策略,有利于实现学习迁移,特别是原理和态度的迁移。因此,我们在数学教学中,应当结合具体的教学内容,渗透数学“转化”思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
“转化”是解决问题时经常采用的方法,“转化”的手段和方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握“转化”策略不仅有利于问题的解决,更有益于思维的发展。教学中不应只以学生能够解决教材里的各个问题为目的,而在于学生对“转化”策略的体验与主动应用。具有初步的“转化”意识和能力,对以后的学习与解决问题将会产生十分积极的作用。
(一)、转化的学习基础
1、知识基础——策略学习的基石
万丈高楼平地起,转化策略的运用同样如此。“转化”就是把新问题变成旧问题,把复杂的问题变成简单的问题,从而使原问题得以解决的一种策略。其实,运用什么方法转化,转化后的问题又怎么解决,这都需要一定的知识基础,否则问题也不能得到解决。可见,一定的知识基础是“转化”策略学习的基石。
2、能力基础——策略学习的有力杠杆
策略的学习不仅需要一定的知识基础,也需要一定的能力基础。心理学研究表明:能力是人们获取知识、掌握技能的基本条件,完成任何一种活动都需要多种能力的结合。因此,学生已具备的能力基础可以说是策略学习的有力杠杆。
①、观察、想象、操作能力:
学习几何形体离不开敏锐的观察力和空间想象力,以及在此基础上进行动手操作的能力。
②、迁移、推理能力:由于“转化”是把一类问题转化成另一类问题,因此无论从转化的视角,还是从推广应用的视角,学生都应具有迁移、推理的能力。所以,教学“转化”策略时,要引导学生正确推理,实现转化,切实解决问题。当然更应由例题的学习,进而能解决类似的更多实际问题。
③、求异、创新能力:人人具有求异的思想,人人具有创新的冲动。事实上,转化也是一种重要的策略,但在真正解决问题时,还需要确定具体的转化目标和方法。
④、收集、处理信息的能力:现代社会是信息社会,收集、处理信息的能力是一个人必备的学习能力,也是衡量一个人能力高低的重要标准。因而,它也是学生学习转化策略的重要能力基础。
(二)、转化策略
1、运用类比联想,实现转化
类比方法是通过对两个研究对象的比较,根据它们某些方面的相同或类似之处,推出它们在其他方面也可能相同或类似的一种推理方法。因此,在学习新知识时,适时运用类比方法进行转化,可使生疏的问题转化为熟悉的问题,有利于学生更好地接受新知识,巩固旧知识。
2、运用数形结合思想,实现转化
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过做一些线段图、 数形图 、长方形面积图 、集合体等来帮助学生正确理解数量关系,使问题内容具体化、形象化,从而把复杂问题转化为简单问题的一种数学思想方法。
3、运用替换思想,实现转化
替换思想是数学教学的重要思维方法,替换的实质是改变题目的形式,但却不改变题目的本质。当我们遇到题意比较难懂的习题时,可以把题中的某些条件或问题替换成与其内容等价的另一种形式,从而实现解题思路的顺利转化,以达到解题的目的。
4、运用已有知识,实现转化
生疏问题向熟悉问题转化是解题中常用的思考方法。解题能力实际上是一种创造性的思维能力,而这种能力的关键是能否细心观察,运用过去所学的知识,将生疏问题转化为熟悉问题。因此作为教师,应深刻挖掘量变因素,将教材抽象程度利用学过知识,加工到使学生通过努力能够接受的水平上来,缩小接触新内容时的陌生度,避免因研究对象的变化而产生的心理障碍,这样做可得到事半功倍的效果。
三、交给学生数学解题方法
1、审题:审题是解题的首要步骤
审题能力如何,直接影响到解题的成败。审题的基本要求是弄清楚题目的两个基本组成部分:条件和结论。在审题时,对已知条件不能遗漏,更不能添加。对于结论,要将表达转换成其它各种等价形式。提高学生的审题能力主要是培养学生分析隐蔽的条件化简、转换已知和未知的能力。有意识地培养学生认真审题的习惯,把条件和问题分析得透彻明确,有助于提高学生的解题能力。
2、教会学生制定解题计划
数学基本概念、基础知识和基本技能是解题的思路和源泉,离开了它们,解题就成了无本之木,无源之水。因此,审题后首先要思考题中涉及到哪些主要概念,在题目的条件和结论里与哪些定理、公式、法则有关,可否直接应用,题目涉及到的基本技能、方法是什么等等。然后才形成解题计划。
3、使学生学会解题的表达
解题的表达要正确、合理、严密、简捷和清楚,把运算、推理、作图所得到的结果准确无误地加以叙述,是解题的一项基本要求。数学解题的表达有一定的规格要求,无论哪种格式,叙述应层次分明,在这个过程中,教师的示范作用非常重要,因此,作为教师不仅要注重知识的传授,而且要注重解题的示范,提高学生的解题能力。
四、增强自信是解题的关键
在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能用自己所学过的知识把它借出来。要敢于去做题。这就叫做在“在战略上藐视敌人,在战术上重视敌人”。解题需要丰富的知识,更需要自信心。没有自信心就会畏难,就会放弃。只有自信才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关。
总之,为了提高学生的数学解题思维能力,我们数学老师应尽其所能找出各种办法去帮助学生。特别是对哪些基础不够扎实的学生,我们更要多多融入到他们的学习当中,尽可能帮他们改正自身老毛病,改进他们的数学学习方法,改变他们“懒惰”的思想,转变他们的数学学习主动性,从而提高他们的数学解题思维能力。