刊名: 教学与研究
Teaching and Research
主办: 中国人民大学
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 0257-2826
CN: 11-1454/G4
邮发代号: 2-256
历史沿革:
现用刊名:教学与研究
创刊时间:1953
该刊被以下数据库收录:
CSSCI 中文社会科学引文索引(2012—2013)来源期刊(含扩展版)
核心期刊:
中文核心期刊(2011)
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
高中数学教学的探讨
【作者】 张珊珊
【机构】 (贵州省黔西南州普安一中)
【正文】 一、有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。如《向量及其运算》这一课是整个向量这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释向量的产生和发展,体会到向量本身存在我们的周围,来激发学生的求知欲望,同时也就提高了学生自己分析问题和解决问题的能力。
二、能突出重点、化解难点
每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。
三、要善于应用现代化教学手段
随着科学技术的飞速发展,对教师来说,掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段,其显著的特点:一是能有效地增大每一堂课的课容量,从而把原来四十分钟的内容在三十五分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。
四、根据具体内容,选择恰当的教学方法
每一堂课都有每一堂课的教学任务,目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。
五、对学生在课堂上的表现,要及时加以总结,适当给予鼓励
在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性
学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。
七、处理好课堂的偶发事件,及时调整课堂教学
尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情。如一次我在讲授《向量及其运算》第二课时时,有“两向量不能比较大小”这一结论,但没有证明。教学计划中也没有证明的要求。在课堂教学中当带到这个问题的时,有一位成绩较好的学生要求我写出解答。我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了向量具有的特性,即大小和方向,不能成立的原因就是多了一个方向。然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈。这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲。
八、要精讲例题,多做课堂练习,腾出时间让学生多实践
根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量。解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出。关键是讲解例题的时候,要能让学生也参与进来,而不是由教师一个人承包,对学生进行满堂灌。教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备。
九、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
十、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。如《向量及其运算》这一课是整个向量这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释向量的产生和发展,体会到向量本身存在我们的周围,来激发学生的求知欲望,同时也就提高了学生自己分析问题和解决问题的能力。
二、能突出重点、化解难点
每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。
三、要善于应用现代化教学手段
随着科学技术的飞速发展,对教师来说,掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段,其显著的特点:一是能有效地增大每一堂课的课容量,从而把原来四十分钟的内容在三十五分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。
四、根据具体内容,选择恰当的教学方法
每一堂课都有每一堂课的教学任务,目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。
五、对学生在课堂上的表现,要及时加以总结,适当给予鼓励
在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性
学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。
七、处理好课堂的偶发事件,及时调整课堂教学
尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情。如一次我在讲授《向量及其运算》第二课时时,有“两向量不能比较大小”这一结论,但没有证明。教学计划中也没有证明的要求。在课堂教学中当带到这个问题的时,有一位成绩较好的学生要求我写出解答。我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了向量具有的特性,即大小和方向,不能成立的原因就是多了一个方向。然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈。这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲。
八、要精讲例题,多做课堂练习,腾出时间让学生多实践
根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量。解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出。关键是讲解例题的时候,要能让学生也参与进来,而不是由教师一个人承包,对学生进行满堂灌。教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备。
九、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
十、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。