中国学术文献网络出版总库

刊名: 教学与研究
        Teaching and Research
主办:  中国人民大学
周期:  月刊
出版地:北京市
语种:  中文;
开本:  大16开
ISSN: 0257-2826
CN:   11-1454/G4
邮发代号: 2-256

历史沿革:
现用刊名:教学与研究
创刊时间:1953

该刊被以下数据库收录:
CSSCI 中文社会科学引文索引(2012—2013)来源期刊(含扩展版)
核心期刊:
中文核心期刊(2011)
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)



浅谈初中数学教学中情境教学法的应用

【作者】 谢志斌

【机构】 广西桂林市恭城县民族中学


【正文】      初中数学新课程标准强调学生的独特的情感体验,要求教师在课堂上能够引导学生进行积极、自主的探究性学习。要想学生积极、自主地进行探究性学习,必须有相应的课堂情景,要让学生有探究的欲望和兴趣,这样学生就会在课堂上积极、主动地学习、探究。正如大教育家孔子所说:“知之者不如好之者,好之者不如乐之者。”下面就结合教学实践具体谈谈情景教学在新课程实施中的重要作用及创设情景的主要方法,希望能够起到抛砖引玉的作用。
  一、 注重数学的文化价值
  情境教育反映在数学教学中,就是要求教师注重数学的文化价值,创设有利于当今素质教育的问题情境。在数学课中加入数学史的讲授会使学生兴趣盎然。
  在初二几何的勾股定理的教学中,如果教师讲授新课时,照本宣科地将知识程式化地交给学生,学生即使知其然,却不知其所以然。失去了对知识、技能、方法的领悟过程。不如先给学生讲“勾股定理”的历史及其一些著名的证明方法,把学生带入勾股定理的教学情境。 教师可介绍:《九章算术》记载:今有勾三尺,股四尺,问为弦几何。答曰:五尺。 我国古代称直角三角形的短直角边为勾,长直角边为股,斜边为弦。又如《周髀算经》称:“勾广三,股修四,径隅五。”课本表述为:勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这个定理,国外称为:毕达哥拉斯定理。勾股定理作为几何学中一条重要的定理,古往今来,有无数人探索它的证明方法。同学们能否猜出有几种证法?怎么证? 这个问题一提出,就让学生倍感新鲜、有趣。当教师告诉学生它的证明方法有500来种,更让他们吃惊。接着教师可以向学生介绍历史上几种著名的证法。如果学校教学条件允许的话,教师可发挥信息技术的优势,利用现代教育媒体,配合教学课件,为学生展现证明的过程,使学生印象更深刻。
  二 、提高教学效率减轻学生学习负担
  在素质教育中,我们提倡提高教学效率,减轻学生学习负担。所谓教学效率是学习收获与师生的教学活动量在时间尺度上的度量。教师只有注重提高课堂教学效率,才能在保证教学质量的同时,努力减轻数学课的学习负担,让学生获得较好的自由度,发挥较大的积极性和主动性。下面以“三角形中位线定理”一节为例,谈谈情境教学对提高课堂教学效率的积极作用。
  在“三角形中位线定理”这一节中,教科书中利用“平行线等分线段定理推论2”得到了“三角形中位线定理”。它是运用同一法思想来推理的。初中学生还不容易接受,但决不能因此而简单地把定理告诉学生,然后就开始练习。我们可以通过创设问题情境,启发诱导引入新知识,激发学生的求知欲,让他们在迫切要求之下学习。
  在复习平行线等分线段定理的推论2后,结合图形(图5)分清定理的条件是AD=BD,DE∥BC。结论是AE=CE。
  问学生:“如果已知AD=BD,AE=CE是否有 DE∥BC的结论呢?”学生中有的回答“有”,有的回答“不一定”。这时可请学生互相讨论一下。如果有DE∥BC的结论,那么能否证明。如果说不一定,能否说出理由。学生的注意力很快地被吸引过来,迫切地想知道问题的答案。
  提出问题后,学生可能证明结论有些困难,这时可稍作引导,提醒学生:“我们现有几种判定平行的方法?”学生容易联想到同位角相等,内错角相等,同旁内角互补等方法,可提醒学生还有:平行四边形来判定对边平行。并注意条件是AD=BD,AE=CE。这时同学们经思考有些已找到思路。通常能找到两种证明方法。
  一种是如图6,延长DE至F使EF=DE。由ΔADE≌ΔCFE得AD∥CF且AD=CF。从而证得四边形DBCF是平行四边形,所以DE∥BC。
  另一种是过点C作CF∥AB交DE的延长线于F。证法与上相似。然后再提示同学们,在证明过程中可得出DF=BC,再把结论总结为DE∥BC且。
  教师可用多媒体设备,演示课件,把两个证明过程演示出来,这样更吸引了学生的注意,最后介绍教科书上的推理过程。在这样的教学过程中,既激发了学生学习几何的兴趣,又使学生对三角形中位线定理有了深刻的理解。同时活跃了学生的思维,收到较好的课堂教学效果。        
  三 、创设教学情境应注意的几个问题
  情境教学能促进教学过程变成一种不断能引起学生极大兴趣的,向知识领域不断探索的活动。它借助新异的教学手段,创设生动有趣的情境,激发学生的学习情绪,使学生固有的好奇心、求知欲得以满足。但应注意以下几个问题:
  1、 教师在创设问题情境时,一定要紧扣课题,不要故弄玄虚,离题太远,要有利于激发学生思维的积极性、要直接有利于当时所研究的课题的解决,既要考虑教学内容又要考虑学生的差异,注意向学生提示设问的角度和方法。使学生从教师的情境设计教学中学到提问题的本领。一个好问题应该是解答中包含着明显的数学概念与技巧;或问题有多种解法;或问题能够推广各种情形;或问题来自学生的经验和日常生活中。
  2、 要启发引导,保持思维的持续性。首先要给学生一定的思考时间和空间,必要时可作适当的启发引导,教师的启发要遵循学生思维的规律,因势利导、步步释疑,切不可不顾学生的心理状态和思维状态,超前引路,也不可强制学生按照教师提出的方法和途径去思考问题,越俎代庖。
  3、 要不断向学生提出新的数学问题,要提出带有导向性、难度适宜、启发性的问题。其实,问题并不在多少,而在于是否具有启发性,是否是关键性的问题,是否能够触及问题的本质,并引导学生深入思考。
  4、 鼓励学生大胆发言,保护学生的独特见解,即使对没有多大价值的问题,也要尽量找出合理部分,给予及时的肯定和表扬。
  综上所述,情景教学对新课程的顺利实施有着不可忽视的作用,如果能够巧妙地在课堂上施行情景教学,吾以为提高课堂教学效果不会是一件难事。良好的课堂情景能够很好地引发学生探究的欲望和兴趣,学生自然就会在课堂上积极、主动地学习、探究。学生的主体作用也就明显地突显出来了。